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(1)

ABSTRACT

A computer program for calculating the effect of
residual stresses on the maximum strength of pin-ended
battened composite columns, subjected to wuniaxial bending

about minor axis is presented.

The method is based on classical inelastic column
theory, using the well known Newmark method of numerical

Ls

integration.

Five selected sertions will be analyzed, for each

section five slenderness ratios and five eccentricity cases

will be consideredy

The sections will be analyzed with and without

residual stresses.

The effect of concrete strength and steel strengths
on the effect of residual stresses on  the maximum strength

are investigated in this study.
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NOTATION

Area of concrete

Total cross sectional area of siructural steel

Width of channel section

Depth of the column section

Depth of the nuetral axis.

Modulus of elasticty of concrete.
Modulus of elasticity of structural steel
Eccentricity of the load

Applied stress on the steel

Applied stress on concrete.

2B-day concrete cube strength.

Width of the column section,

Length of the column

Bending moment

Ultimate bending moment

Number of nodes along the column length
Axjal load

Squash load of the column

Uncorrected slope at node position i
Thickness of the channel fiange.
Thickness of the chanpel web

(V)
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(VD)

Concrete contribution factor

Eccentricity ratio; (small end bending moment divided
by the larger one), -1 < B £ 1.0

Strain in concrete. |

Length of the column divided by number of nodes;L/n
Numerical factor equal to VEI /P

Curvature
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CHAPTER 1 (1)

CHAPTER I

INTRODUCTION

1.1 GENERAL.

A composite steel-concrete column is a member with a
cross-section consisting of steel section (or sections) and
concrete which act together to resist axial compression and
bending. Two types of composite columns are commonly used,
these, as can be seen in Figure 1.1, are the steel sections

encased in concrete and hollow sections filled with concrete.

A new type of composite column, the battened composite column,

, has recently been suggested for use in multi-storey framed
structures. It consists of two steel channels battened
‘together to form a rectangular shape and then filled with

concrete , this section is shown in Figure 1.2.

1.2 PREVIOUS RESEARCH.

In 1905, first recorded tests on built-up composite
columns were carried out by Emperger [5]. This and other
early investigation on the behaviour of this type of sections
were essentially experimental and were confined to the case

of concecentric loading only.
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. of 3) Encased columns

b) Concrete-filled
cotumns

[ TTLI I Iy YY)

1]

-

. Steel channels
2. End and intermediate
batten plates
3. In-Situ concrete Z

ju—

Figure (1.2) - Section in the battenad compoaite columna,
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CHAPTER 1 (3)

Later in 1935, tests on encased built-up sections
were carried out by Bondale [5] to investigate the behaviour
of such members under eccentric loading. Since then, the
research on the built-up composite columns has declined
until, in the mid 1940’s, some more tests were reported

[3,4,9].

Furthermore, .in the 1970‘s some experimental and

theoretical works were carried out on such columns [5,15,14].

1t should be mentioned that most of the studies on the

behaviour of the huilt-up composite columns were dealt with

built-up sections encased in concrete [3,4,5,6,13,15,154].

In 1980°'s, some tests were carried out at the
University of Manchester, to investigate the behaviour of
battened composite columns under eccentric loading [B,14].
Also some experimental and theoretical works were carr}ed out
at the University of Jordan to investigate the behaviour of
the battened composite columns subjected to eccentric loading
and biaxial bending [2,7,12].

Many experimental results with rolled or built-up
shaort steel columns show lowser geritical loads than the
theoretical results, because of early vyielding in the

cross~section due to residual stresses.

Recent research was carried out by Litzner and
Crisinel [10] to investigate the effect of the residval
stresses in steel sections on the load ﬁarrying capacity of
steel concrete composite columns. It was concluded that the
effect of residual stresses on the carrying capacity. of

composite column is less than that on a bare steel column.
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Table 1.1 :

Summary of some of the references in

(4)

previous
research.
Author Type of column Point of
& reference |Year considered investigation
number
Faber [61] 1956 |Cased stachions General behaviour

Stevens [13]

1959 [Encased stachions

General behaviour

Jones & Rizk

1962 |Encased stachions

General behaviour

£9] .
Basu [3J] 1967 |Encased stachions |Failure loads
Basu & Hill 1968 [Encased stachions [Failure loads
[4]
Viridi & 1973 |Encased and filled|Design methods and s-
Dowling 1976 |composite columns |trength under biaxial
[15,16] bending.
Bridge & 1978 |Encased built-up General behavbiour

Roderick [5]

columns

Litzner 2
Crisinel [10]

1781 |Encased and filled

columns

Effect of residual s-
tresses on th carryi-
ng capacity

T
ayler, 1983 (In-filled battened| General behaviour
Shakir and .
Yee [141 composite columns
Hunaiti 1985 | In-filled battened|[General behaviour un-
i8] composite columns |der large eccentric.
Ghanam [7] 1989 [In-filled battened|General behaviour un-
composite columns |der biaxial bending
Ryalat, S. 1990 | In-filled battened|[Failure loads under
[12] composite columns [major axis bending
Al-Hallie 1990{Inifilled battened|Failure loads under
(2] composite columns |[minor axis bending
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CHAPTER I (3)

1.3 OBJECTIVES OF STUDY.

No research has been carried out to investigate the

effect of residual stresses on the ultimate strength of the

battened composite columns .

The wuwsual manner in the analysis is to use
elasto-plastic stress-strain curve for steel, and assuming
complete absence of residual =stresses across the steel
sections; however, since residual stresses are quite common
in structural rolled steel and other sections, it is worthy
to consider the effect of residual stresses on the ultimate
load-carrying capacity of the battened composite columns. The
subject of this investigation is to study the effect of
residual stresses on the capacity of battened composite

columns bending about minor axis.
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CHAPTER II

MATERIAL PROPERTIES

The mechanical properties of steel sections and
concrete affect the ultimate strength of battened composite

columns, as any other structural members.
2.1 CONCRETE PROPERTIES.

The stress-strain curve for concrete used in the
analysis is based on the experimentally observed relations of

tested specimens.

The stressc-gtrain relationship for concrete as it
exist in the column under uniaxial bending differs from that
of test specimens, it is a common practice to reduce the
stress orginate by a reduction factor; this factor usually
has values varying between- 0.8 and 0.9, and corresponds
closely to that relating cylinder to cube strengths. Also the
concrete strength varies throughout the column; an additional
reduction factor on the cube strength is often used +to
account for this variation. The stress ordinate is wusuvally

reduced to two-third of the cube strength.

The stress~strain curve recommended by CP110 is shown
in Fig. (2.1), and this will be used throughout this study.
The parabolic part of the curve is represented by the

following formula:
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Fc = 0.47Fcu [2EC — ( &c )z]
<o <o

In which =

2°.67Fcu
Eo Z ——eoe—
Ec
Ec = 5500 Fcu
Where :

(7)

(2-1)

(2-2)

(2-3)

Ec : Initial modulus of elasticity (N/mmz).

Fcu : Concrete cube strength tN/mmz).

€cu ¢ Ultimate compression strain for concrete.

€o : LConcrete strain at begining
plateau.

etz : Conecret strain.

A

067Fcu

of horizontal

Stress(Fc)

o
Strain € c

Ceu

>

Fig.(2.1) ldealized stress—strain curve for concrete.
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CHAPTER II (8)

2.2 STEEL PROPERTIES.

Strength of structural steel members is most affected

by the compressive yield stress.

Because of the risk of buckling in compression tests,
it is therefore a general practice to determine material
properties from the tension test and to assume identircal

behaviour in tension and compression.

For computational purpéses, the stress-strain
" relationship is idealized. It is common practice to adopt an

elastic-perfectly plastic (bilinear) curve for steel as shown
in Fig. (2.2).

A

Fy — —

~ Fy: Yield stress

i Es: Modulus of Elasticity
L _ '

0

1)

0

| -

e

0 Es

Strain

Fig.(2.2) Idealized stress—strain curve for steel.
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CHAPTER I1 (?)

2.3 RES5IDUAL STRESSES.

Residual stresses are stresses that remain in

unloaded member after it has been formed and erecte&.

Residual stresses resulted from plastic deformations
which, in structural steel, may be caused by several sources,
such as - ,

I : Uneven cooling, which occurs after

hot-rolling of strucural steel shape.
II

Cold bending or cambering during
fabrication.
IIT : Punching of holes and cutting operations

during the fabrication process, andg
v

Welding.

In hot-rolled structural shapes and in welded
sections, the residual stresses from uneven cooling will be
taken into account in this research only in calculating the

failure loads.

The portion of the member that cools most slowly
develops residual tension stresses which are balanced by
residual compression stresses in other portions of the

member.

Residual stresses from cooling are approximately
constant along the length of the member, where as
cold-straightening stresses frequently occur only at

particular locations where the member has been straightened.

390160
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CHAPTER I1 (10}

In this study, for thearetical computational
purposes, the residual stresses distribution in the channel

sections is taken as shown in Fig (2.3) [5]

N
0.15Fy |, 4™\
N
v\_'_ N 0.075Fy
+ve : Tensile AN
stresses
- > 0.25Fy
—ve : Compressive J/
stresses L/
//
Z* //.ff 0.075Fy
+
0.15Fy //

Fig.(2.3) Theoretical residual stresses distribution.

2.4 IDEALIZATION OF THE CHANNEL SECTIONS.

To ease the computations, the channel sections have

been idealized as shown in Fig. (2.4).
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CHAPTER Il

The area of idealized channel section ,Asi,

by :~-
Asi = 2b tf+tw(d-2tf)

Where :

d : Depth of section.
b = Width of section.
tr: Thickness of flange.

tw: Thickness of web.

er 4

——-1 ent— -tVV

N
~ b=

Fig.(2.4) Idealized channel section.

(11)

is given

(2-4)
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The idealized centroid of the channel section,Cyi, is

given by :r-

Cyi = [b ti+(d-2t1)tw /2]1/0si (2.5}

and the second moment of area about the major axis is

given by :-

3
._ o d *tw 1 . a_ 1 _ -
Ixxi= T+ (b-tw) to+——(b tw) (d—tr) e (2.6)

]

Thé results of the idealization of the channel

sections are given in Table (2.1).
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{13)

-
‘D
Tabhle (2.1). Idealized properties of channel sectioms. g%
O
. )
Channel DeFth Hidth § Heb Flanﬁe firea | Area Centr-1Centr- Momen t] Moment .
size 0 of |thick-}thick-]of se-| o oid of|oid of of | of
sect-[secti-] ness | ness |ction |ideal-| « sect- ideal,] = inert.]inert.] %
ien on r ized ion |sect. .
d b tw {f Ass sect, 1 Error Cy Cyi  |Error Ixx, Ixxi, 1Error
MM MM MM MM MR M CH {cm) {cH) CH CH
432xiez |431.8]101.8 | 12.2 § 17.3 |83.49 |93.60 | a.13 | 2.32 2.49 1 7.33 | 21399 | 21474 | B.35
38lx102 381.9*191.8 10.4 | 16.8 |78.19 |78.24 e.e8 | 2.52 F 2.74 | 6.73 | 14894 14957 | 0.42
305x102 |304.0]10L.9 | 10,2 | 15.2 |568.83 |58.84 | 0.0z | 2.¢6 2.91 ] 9.48 | 8214 | 8234 | @.24 &t)
305x89 ]304.9] 88.9 ) 10.2 | 14.1 |53.11 |53.20 | e.18 | 2.18 2.36 | 8.26 1 7ecl | 7934 | 0.32 ig
2354x8% 254.9' 88.9 | @9.1 ] 14.1 [45.52 |45.54 | 6.0a | 2.42 | 2.64 9.09 | 4448 | 4474 9.58i1§
254x76 254.8‘ 76,2 | 3.1 | L11.4|36.03 {36.16 ] @.20| 1.86 | 2.04 .68 1 3367 | 3392 | 0.74 P
239x89 |228.6] 88.9 | @%.6 | 13.8 [41.73 l41.90 | 0.22 2,33 ]| 2.79 |1e.28 | 3387 | 3416 | @.8% ji
D
229x76 |228.6] 76.2 § @7.6 | 11.6 |32.20 |33.30{ @.27 2.6e | 2.20 |10.00 | 281@ | 2632 9.84_2
2@3x89 1203.2( 88.9 | 08.1 | 13.4 }37.94 [38.10 | 0.46 | 2.65| 2.93 |1e.57 ) 2491 | 2520 1.16 D
203x76 |203.2] 76.2 | @7.1 | 11.6 |30.34 |30.46 | 9.79 2.13 | 2.36 l18,8@ | 1958 } 1979 | 1.03 gl
178%89 197.8] 84.9 @7.6 | 12.7 {34.15 [34.16 0.0a | 2.76 3.07 111.23 1753 | 1766 | 8.7 ¥
, 178x76  |177.8] 76.2 | 06.6 | 10.7 |26.54 |26.63 | 9.24 2.28 ) 2.46 |11.82 | 1337 { 1350 ] 0.97 1
i 1
152x89 |152.4] 88.9 § @7.1 | 11.9 [3@.36 [30.30 | 0.23 | 2.86 | 3.21 {12.24 | 1166 | 1177 | v.60 8
>
132x76 |152.4] 76.2 | @6.4 | @9.4 |22.77 |22.98 | 0.47 2.21 1 2.51 [13.57 |852.5 |866.¢6 | B.95 EE
x
)
o
L
=
x
<
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CHAPTER III

THEORY

3.1 GENERAL.

No general analytical solution exists for the
stability problem of composite beam~columns under various
loading conditions, the difficulty is caused by the inability

to obtain general direct solutions to the govering

differential equations.

Many analytical methods have been regorted on the
generation of interaction curves. One feature éommon to all
of them, that is, it is first necessary to obtain the
moment-curvature relations of a cross-section as a function

of the axial load on the section.

Once these curves are ' established, the true

equilibrium shape of the deflected column can be obtained by

an iterative numerical procedure.

3.2 ASSUMPTIONS.

In the present study, the major assumptions are as
follows :

1- The tensile strength of concrete is
neglected.

2- The effect of strain hardening in steel is
ignored.

3- There exist complete interaction between
steel and concrete, that is, the strain in
steel and concrete at their interface are

assumed compatable.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



CHAPTER I1I (13)

4- The strain disfribution a cross the section
is assumed to be linearlly wvarying in
proportion to the distance from the neutral
axis.

S5~ Residual stress distribution is assumed to be

as can be seen in Figure (2.3).
3.3 CALCULATION OF THE COLUMN SECTION PROPERTIES:
3.3.1 CALCULATION OF THE SQUASH LOAD; Pu :-

The theoretical squash 1load for the battened

composite column Pu is given by :-
Pu = Fy As+0.47Fcu Ac (3-1)

Where:
As : Total area of steel.
Ac T Total area of concrete. i §
Fy = Yield stress of concrete.

Focu: 2B-day cube strength of concrete.

The effect of residual stresses on the sguash load

for the battened composite column is ignored [113.
3.3.2 CONCRETE CONTRIBUTION FACTORj; a:
Concrete contribution factor 1is a parameter which
gives the proportion of +the squash load carried by the
concrete alone. This parameter is known as oy and 1is given

by:

ac = 0.67Fcu Ac/Pu (3-2)
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Where:

Fcu,Ac,Pu as defined before.

3.3.3 CALCULATION OF THE PLASTIC BENDING MOMENT: Mu:

The plastic bending moment; Mu, (when axial load is
equal to zero), of the column section is determined by
considering equilibrium across a fully plastic section. the
calculation of the equilibrium condition is based on the
standard practice of assuming rectangular stress blocks in
both steel and concrete, as shown in Figure (3.1).

The plastic bending moment; Mu, is given by:

My = M1+M2+M3+MA+MS+ME (3-3)

where:

ML = 2.tf b Fy (X+0.5tf) (3-3-a)

M2 = tw Fy XZ (3-3-b)

M3 = 0.687Fcu S tf (X+0.5tf) (3-3-c)

M4 = 0.67Fcu X® (h-Z2tw}/2. (3-3-d)

M5 = 2.¢%1 b Fy (d-1.5tf+X) (3-3-e)

M6 = tw Fy (d-2tr-X)° (3-3-1)

X : the loacation of the neutral axis, which gives the
zero axial load, as shown in Figure (3.2), and is given by:

o {2e)Se g Brosrren o e

Where :

Fy,Fcu : as defined before.

d,;h,b,tr,tw,5 : are defined in Figure (3.1)

The effect of residual stresses on the plastic

bending moment for the hattened composite column are ignored

riil.
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. , Fy 0.67Fcu
4+ O = el
44—~ .Cs
) g 1 Sl i |
X T8 > dl —' de —’
PrtatConTa 0.0 - ¥
M=Coad1-+Cord2+Ted3 c:Stedt bConcrote

Fig.(3.1) Stress block diagram of the batteried compesite column.

3.4 ULTIMATE STRENGTH FOR ZERO LENGTH COLUMN :
The wultimate strength of the column section is
determined by considering equilibrium across a fully plastic
section. And as mentioned in section 3.3, the ralculations of
the equilibrium conditions are based on the standard practice

of asuming rectangular stress blocks.

The method of calculating the cross-section strength

is summarized in the following steps:-

1- Increment of axial load P is assumed.

2- The location of neutral axis X, which gives
the axial load P, as shown in Fiqure (3.2),
is calculated.

3- The bending moment M, at this location of the

heutral axis X is computed.

Ce
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: Fy 0.67Fcuy
4 ™ — N |
Cs

-
. i
]___ 1 NA _i
y -
— C o3
Pu=Ca+Cc~Ts 4
MaCend?+Coed2+Tend3 o<Stoel b:Concrate

Fig.{3.2) Stress block dlagram of the batiened composite column.

The effect of residual strese on the ultimate

strength of zero length column, is calculated as follows:

1- An Increment of axial load P is assumed.

2~ The locafion of neutral axis X, which gives
the axial load P, after substracting the
existing residual stresses in the steel
bloek is computed, as shown in Figure (3.3).

3- The bending moment M, at this 16cation of the
neutral axis X, taking into account the
existing residual stresses in the steel

is computed.

Ce

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



CHAPTER II1

K]

_?_____

(19}
Top flange Fy 0.67Fcy
| | +va: Compreasion
B ~va: Tenslon
+ +
4 NA_
Stoel Concrote
Bottom flange

(a) ~Fy
Fy 0.078Fy  0.925Fy
-'- —
- - + Resultant strees distribution o cross
- the top flange.
(b) 0.15Fy fy
Fy 0.075Fy Fy
' +
Resutant stress distribution o cross
_ the bottom flonge.
(e}
0.15Fy 0.85Fy
Fy 0,15Fy Fy
: + »
+ Resultant stress distribution o cross the
D= 3 web
- - 0.75Fy
- 0.25Fy -
(d) é
0.15Fy 0.85Fy

Fig.(3.3) Resultant stress distribution
a cross the column section

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



CHAPTER III

3.5 ULTIMATE STRENGTH FOR SLENDER COLUMN:

3.5.1 MOMENT-CURVATURE-THRUST RELATIONS:

(20)

For a given combination of axial 1load and bending

moment acting on a section. there exists a unique value of

curvature, this means that the deformation of a section

depends only on the final values of +the axial load

bending moment, and that the actual history of loading

not affect the amount of the resulting curvature.

and

does

The moment-curvature-thrust relationship, in the case

of uniaxial bending, involves four gquanities; axial loa
uniaxial moment M,distance of neutral axis Dn from
0,and curvature & as shown in Figure (3.4). By assigning

possible values to any two of the variables,the other tw

be found.

d P,
point
all

0o Ccan

0
Fs FC
[* 7 - 7
In
d
@ ) ) (d)

Fig‘(l‘@' (o) Discretization of the column x—section.
Cb) Straln distribution
(c) Steel stresses
(d)> Concrete stresses.
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One course that can be taken is to assign values to &
and Dn, in this case no iterations are involved, and the P
and M can be directly be computed. However, it should be
mentioned that any meaningfull representation of results

-would involve some form of interpolation.

Values of & are assumed, and distance of the neutral
axis Dn is variéd between specified limits. For each position
of the neutral axis, the strain, stresses and forces in each
elemental area are computed, taking into account the
stress-strain characteristics of concrete and steel as the
case may be. Summations over the section are carried out for

the moment due to the elemental forces.

Thus, for different locations of the neutral axis,
sets of values of the axial ‘force and bending moment are
obtained. Inorder to obtain moment-curvature values for

specific values of P, linear interpolation is used.

The effect of residual stressec on the
moment-curvature-thrust relationship is calculated as
follows:

1- A suitable value for curvature ® is selacted.

2- A suitable value for neutral axis Dn isg
selected.

3- Strains, stresses in concrete and steel are
computed.

4- Residual stresses are then subtracted.

S5- Axial force P, and moment M due to the
resultant stresses in steel and concrete are

computed, as shown in Figure {(3.5)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



CHAPTER III

Fs Fc
[F' ¢
—
(a) () (o) (d)
0.15Fy
VAR 0.075Fy

é 47.4

_ (f) (e) | (g)

1

Fig.(3.5) (a) Discretization of the column cross—section
Strain distribution.
c) Steel stresses.
d) Concrete stresses,
@) Residual stresses,
gj Resuitant stresses.

(22)
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3.5.2 DETERMINATION OF EQUILIBRIUM SHAPE:

The theory presented below is in a general form, so
that it can be applied to any eccentrically loaded pin-ended

column, assuming that the moment-curvature chatacteristics

have already been established.

Consider a column of length L, as shown in Figure

(3.6}, loaded with an axial load P, and having different end

eccentricities e and fe respectively, where 7 is a constant

called the eeccentricity ratio (-1 = 3 < 1).

Node position

D N — Be _ x
0 Yi
e Xi
- L : -
Deflected shape _l
‘ under load

y Fig.(3.6) Applied loading system.
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The numerical method proposed by Newmark is used

here to determine the equilibrium shape of the column. This

method is based on assuming values for the deflection Y +to
loading. For convenince, the deflection obtained from an
elastic solution for the column is used as an intial

approximation, and is given by :

= . Sin yl(1-i/n) Sin uL(i/n)

Yi = ‘e Ein L — (1—%/n) + afl Bin L — i/n
i=0,1,2,0c.... »N (3-4)
Where:
p= JP7ET

EI

Elastic flexural rigidity of the column section.

n = Number of nodes.

Eccentricity.

Having obtained values for the assumed deflections,
Newmark s numerical procedure is used successively to correct
these values until the true deflected shape of the column is

obtained to the desired accuracy.

The following steps summarize the Newmark’'s

procedure :--

1~ The bending moments due to the deflectetions.

at the node points are computed, as follows:
Mi = Pe [1—(1—ﬁ)i/n ] + P Yi i=0,1,2,...,n (3-9)
2- PBased on the M- curve for the axial load P,

and by interpolation, the curvatures at node

points are computed, corresponding to the
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node moments computed above.

3- Concentrated angle changes (3A); are computed
at each node point.

4- Values for the uncorrected siope at each node

position are computed, as follows:

So = 0.
. 1

S5i = § (§A)k 1 =21,2,...,n (3-4)

k=1
Where:

A = L/n

9- Uncorrected deflections using Newmark’s
method are computed as follows :-

Uo = 0.
i

Ui = p kSk iz 1,2,....,n (3-7)
k=4

6- A linear correction will be applied to these

deflection at both ends of the column, and

therefore a new set of values for
deflections due to load will be obtained as
follows:
Yi = Ui - i Un/n (3-9)
7~ The assumed value for Yi used in step 1

will be replaced by the new values Yi
calculated in step &4 , and steps 1 to &6 will

be repeated until convergence is obtained to

a
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the desired accuracy. For the purpose of

this study, this condition is assumed
satisfied if for all nodes :

[Yi-¥i| < 107  iz1,2,....,n (3-9)

3.5.3 COMPUTATION OF FAILURE LOADS.

If the required convergence can not be obtained
within a reasonable number of cycles (depending on the
accuracy desired), or if the moment at any node during the
iterations exceeds the ultimate moment of the section
corresponding to the applied end load, it is concluded +that

the load is too high for equilibrium to be possible.
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CHAPTER IV

COMPUTER PROGRAM

The computational procedure described in chapter 111
was programmed by FORTRAN-77 language, using VAX-B700
computer, lorated in the Faculty of Engineering and

Technology at the University of Jordan. A simplified flow

chart of the main pragram ic shown in Figure (4.1). A listing

of the program is presented in a seperate report submitted to

the Department of Civil Engineering.

The program starts by calling subroutine DATA, which
reads and prints the input data, related to the geometrical
properties of the column, the material properties,
eccentricity ratio (2), number of nodes along the - column
length desired to be used in the analysis. The squash load
(Pu} and the concrete contribution factor (ac) are also
computed using subroutine DATA. Pure plastic bending moment

{(P=0.0); Mu is computed using this subroutine.

Subroutine ZERO-LENGTH is tben called by +the main
program to compute the failure lloads for the battened
composite column section bending about the minor axis. These
failure loads are computed as non-dimensional values of the

axial load (P/Pu) and bending moment (M/Mu) for the case of
zero-length column.

Subroutine MOMENT-CURVATURE is then called by the
main program to compute the moment-~curvature (M-3) values for
the battened composite column section for a given increment

of axial load.
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Subroutine NEWMARK is then called by the main program
to compute the failure loads, for a given eccentricity ratio

'{f?), and for slenderness ratio of L/D=10,20,30,40.

Subroutine DRAW1 is then called by the main program
to plot the moment-curvature (M-%) values for the given load

increments computed previously by subroutine
MOMENT-CURVATURE.

Subroutine DRAW2 is then called by the main program
to plot the failure loads (P/Pu Vs. M/Mu), which is computed
previously by subroutine ZERO-LENGTH and subroutine NEFWMARK.
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Start

Y

Read data, Calculate
squash [gad (Pu),
pure plastic hending
mwoment (Mu), contri-
bhution facter («e).
CALL DATA

\

Failure load of
Ero length
column

CALL ZERQ-LENGTH

Y

Preparinyg moment-
curvature-thrust
(H-3-F)

CALL MOMENT-
CURVATURE

¥

Failure load of
slender column

CALL NEWMARK

Y
Plot M-¢-P curves
CALL DRAWL

Y

Piot M-P curves
CALL DRAMZ

End

Figure (4.1). Simplified flow chart of main progran.
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4.1 ZERO-LENGTH ROUTINE:

The computation procedure described in section (3.5)
of chapter III is used in this subroutine to calculate the
ultimate resistance of the battened composite column section,
bending about minor axis. A simplified flow chart of

ZERO~LENGTH routine is shown in Figure (4.‘3) .

The battened composite column section is subdivided

in to a large number of small size strip elements as shown in
Figure (4.2).

In each strip element, for a given value of depth of
yielding (Dn), the stresces are computed depending on the
material composed in this strip element, taking into account
the existing residual stresses. Then the values of P and M
can be caculated for each strip, and by summation, the axial
force and bending moment in each block is computed. The
resultant P and M will he evaluated for the specific value

of Dn, by adding the axial loads and bending moments for all
blocks.
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Set increment
load
P = 8.85Pu

Y

Set'degth of
yiel 1ng
Dn = 9.82D

v

'Y
g

Y

Fy

4
o |

-

t

Caleulate ax-
ial force and
wmoment in st-
eel hlocks

L

1

Calculate ax-
ial force and
moment in co-
nerete hlocks

|

Y

F

Caleulate total
axial force(PT)
and monent (MI)

Nao
Dn = DInt+@.@2D
End 4 Re turn
Figure {4

Y

. Linear
interpolation

P=P+8.085Pu

-2) Simplified flow chart for ZERO-LENGTH routine.

(31)
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Fig.(4.9) Discretizaion of the column
oross—section.
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4.2 MOMENT-CURVATURE ROUTINE:

Subroutine MOMENT-CURVATURE ic called by the main
program. The c¢omputation procedure described in section
{3.5.1) of chapter IIl is used in this routine, to compute
the moment-curvature {M-2) values of the hattened composite
column section for a given increment of axial load. A
simplified flow chart of this routine can be seen in Figure
(4.4).

The computation of M~%& values involves the moment M,
the axial load P, the curvature & and the distance of the
neutral axis Dn, The last two specify the strain distribution

across the section.

The battened composite column section is subdivided
into two blocks of concrete and three . blocks of steel as

shown in Figure (4.3).

In each strip element, depending on the strain
distribution, stresses are computed making use of the assumed
stress-strain curves of material composed in this strip
element, taking into account the existing residual stresses.
Then the values of P and M can be caculated for each strip,
and by summation, the axial force and bending moment in each

block is computed. The resultant P and M will be computed for

the specific values of Dn and ¥, by adding the axial force

and bending moments for all blocks.
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Set increment
load P

¥

w

. get curvature
¢ = e.5me

4—{2 = & + B.5%10°%

Y :

Set distance of
neutral axis
In = 0.02D

-

4
o Ll *

steel

Calculata Calcu
axial force
and moment in

axial force
and moment in

concrete

late

l

Dn = In + 0.82D

F 9

P=P+0.8%5Pu

Y

Caleulate total
axial force PI
and moment MT

No

P ) 8.9Pu

Yes

¥

interpalation

Linear

Re turn

Figure (4.4) Siwplified flow chart for MOMENT-CURVATURE routine.

(34)
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4.3 NEWMARK ROUTINE:

Subroutine NEWMARK is called by the main program to
compute the failure loads, using the maximum eccentricity
criterion described previously in section (3.5) of chapter
II1. A simplified flow chart of this routine is shown in

Figure {4.3).

In computation +the critical wmaximum end moments,
increment of 0.005 Mu were incorporated until the ultimate
moment corresponding to the applied end 1load at any node
during iterations is exceeded, or the required convergence
cannot be obtained within "“the fourty cycle" used in this

research as a limit of the convergence process.
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CHAPTER V

NUMERICAL RESULTS AND DISCUSSION

The maximum strength of a beam-column can he
expressed by an interaction curve showing the reduction in
the ultimate load with increasing moment. In the analysis to
calculate the strength, eguilibrium conditions of the member
and the moment-curvature-thrust relationships of the section

are the two basic requirements.

In this chapter, the effect of residual stresses on
the maximum strength of the battened composite column bending

about minor axis is discussed.
5.1 PROPERTIES OF THE COLUMN SECTION:

Column strength depends on two basic factors; the
ultimate strength of the section and the slenderness of the
column. The strength of the column and its section properties
have been non-dimensionalized in this study. Also in
preference to the slenderness function adopted as a design
parameter, a simple variable was used. The slenderness was
represented by the ratio of the column length to the depth of

the section.

In the column section for the analysis, the following
limitations were applied:
1- The smallest channel included wac 152x76x46.4
2- The largest chamnel included was 381x102x10.4
3- The sectional dimensions of the column were

such D < H < 3D

Twelve sections were selected for the analysis, and
: .

»
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the properties of the sections are given in Table (5.1).

For each section, five loading conditions were

investigated.

follows:
CASE

CASE

CASE

CASE

CASE

o

3

Case I

Figure

Iv

These conditions, shown in figqure (S5.1), are as

End moment applied at one end of the
column ¢( 2 = 0.0)}).

ITI = End moment applied at one end, and half of

that moment is applied at the other end
{ 7 = 0.9).

III: Equal end moment at both ends of the

column ( £ = 1.0).

End moment applied at one end, and half of
that moment, but in opposite direction,

is applied at the other end ( 7 = -0.5).

Equal moments at both ends of the column

with opposite sense ( 3 = -1.0).
P
(J'{’M r}fM f&{’ﬁ A

DD M D

M/2 M M/2
VUG T
e V
Case 1l Case I1I Case IV Cos
¢(5.1> — Coses of Looading
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Tahle (5.1} Phugical properties of hattened composite columns.

{3%)

Section
H d b tw t Fy Feu «c Fu Mu
number f
] MM [ula] L) HH HPa. HPa KN EN.n
1 275 |152.4 } 976.2 6.4 9.4 276. 38.9 10.374 |2807.27 | 79.604
2 373 |263.2 } @8B.9 8.1 13.3 276. 30.0 ]6.397 {3472.49 |177.084
3 450 |254.0 | esd.9 9.1 14.04 | 276. 38.8 |0.457 |4625.00 | 263.4949
.4 525 }304.8 | 1e1.8 | i@.2 13.14 | 276. 30.0 |9.47% |6224.77 |41@.082
5 600 }3sl.e | lei.2{ 19.4 16.72 | 276. 30.@ |9.527 |0184.60 |6i4.680
6 273 |152.4 | @976.2 6.4 9.4 248. 30.0 ]0.399 |1881.63 | 72.070
7 273 |152.4 | @76.2 6.4 9.4 343. 30.0 ]9.323 {2321.383) 99.290
8 275 {152.4 | @v6.2 6.4 9.4 276. 20.0 ]0.285 {17357.08 | 77.6806
9 273 |152.4 ] @76.2 6.4 9.4 276. 40.8 ]0.443 12257.55 | 00,900
10 273 |1%2.4 ] @76.2 6.4 9.4 248, 2.0 0.8 |1136.81 [ 64.703
11 273 |152.4 | @76.2 6.4 9.4 276. v.8 0.0 |12%6.45 | 71.892
12 279 {152.4 | @76.2 6.4 9.4 345. 8.0 8.9 |1570.56 | 8£9.865

* Es = 208 MPa.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



CHARPTER V (40)

The results are presented in a saries of
non~-dimensionalized interaction curves. The ordinates of
these curves are the critical load divided by the squash load
and the critical bending moment divided by the wultimate

moment (i.e : Pcr/Pu Vs. Mcr/Mu).

Most of the moment-curvature-thrust curves and

interaction diagrams are presented in appendix (A).

5.2 EFFECT OF RESIDUAL STRESSES ON THE MAXIMUM STRENGTH OF
ZERO LENGTH COLUMN

As can be seen from Tables 5.2,53.3,5.4 and 5.5, that,
the effect of residual stresses on the maximum strength of
the battened composite column of zero length increase as the
axial loéd increase, except for the axial leoad equal to
0.2Pu.

AS can be seen from Tables 5.2,5.6 and 5.7, that, the
effect of residual stresses on the maximum strength of
battened composite column of zero length increase as the

yield stress (Fy :) of steel chamnnel increase.

AS can be seen from Tables 5.2,5.8 and 5.9, that, the
effect of residual stresses on the maximum strength of
battened composite column of zero length decrease as the

concrete strength (Fﬁu) increase. -

A= can be seen from Table 5.10, that, the effect of
residual stresses on the maximum strength of 2zero length

steel column increase as the axial load increase.

As can be seen from Tables 5.2 and 5.10 , that, the

effect of residual stresses on the maximum strength of zero
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iength steel column is greater than the effect of residual
stresses on the maximum strength of zero length battened

composite column.

As Ccan be seen fram Tables 5.2;5.3,5,4 and 5.5, that,
the effect of residual stresses decrease as the depth of
steel channels increase for the axial load varies between
0.1Pu to 0.4Pu, and increase as the axial load varies between

0.5Pu to 0.%9Pu.

3.3 EFFECT OF RESIDUAL STRESSES ON THE MAXIMUM STRENGTH (F
SLENDER COLUMN

As can be seen from Tables 5.11 and 5.12, that, the
effect of residual stresses on the initial slope (EI) of
moment-curvature curve is increase as the axial load

increase.

As can be seen from Tables 5.11 and 5.12, that, the
effect . of residual stresses on the peak of the

moment-curvature curve is increase as the axial load

increase.

As can be seen from Tables 5.13 and 5.14, that, the
effect of residual stresses on the maximum strength of
battened composite column decrease as the length of column

increase.

As can be seen from Table $.15, that, the effect of
residual stresses on the maximum strength of steel column

decrease as the length of column increase.

As can be seen from Tables 5.16,5.16,5.17 and 5.18,

that, for L/D=10, their is no effect of cases of loading on
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the effect of residual stresses on the maximum strength, for

eccentricity ratio (# - 0.0,-0.5,-1.0). .

As can be seen from Tables 5.19,5.20 and 5.21, that,
for L/D=40, the effect of residual stresses on the maximum

strength is increase as the eccentricity ratio (f?) decrease.

As tan be seen from Table 5.22, that, the effect of
residual streses on the maximum strength of battened

composite column decrease as the concrete strength increase.

As can be seen from Tables 5.23 and 5.24, that, +the
effect of residual stresses on the maximum strength of column

increase as the vyield stress of steel channel increase from
24B MPa. to 274 MPa.
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Table (3.2) Effect of residual stresses on the maximum strength
of zero length column MHo. 1.

Diff ¥
P Mu MR

Mw-MR
Pu Mu Mu —100

Mu

* ¥

8.1 1.08562 1.8269 2.93
2.2 1.0714 1.8425 z2.89
2.3 1.0456 1.08143 3.13
2.4 8.9787 8.9433 3.54
8.3 @.87a7 9.83039 4.02
B.6 a.7217 B.6767 4.5
8.7 9.5498 B.5039 4.5%
e.8 0.3724 B.3253 4.73
3.9 @.1889 0.14a@7 ‘4,82

Average ¥ = 3.9856

# Mithout residwal stresses.

##% Hith residual stresses.

Pu
Mu

2007.272 KN,
79.60439 KN-w.

(43)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



CHAPTER V , 48)

Tabhle (5.3) Effect of residual stresses on the maximum strength
of zero length column No. 2.

Diff %
P Mw MR
Mw-MR
] Pu Mu Mu H—*l @o
¥ ¥ 4

g.1 1.8626 1.0335 2.91

8.2 1.e831 1.8546 2.85

@.3 1.2641 1.0307 .87

2.4 08.9976 9.96289 3.48

0.5 0.8916 9.951% 1.9

9.6 @.7433 9.6984 4.49

e.7 | 0.5677 | e.5218 | 4.63

e.8 @.3849 8.337¢ 4.70

8.9 @.1957 0.1477 4.86

Average ¥ = 3.8844

# Hithout residual stresses.
*% Hith residual stresses.

Pu = 3472.485 KN.
Mu = 177.8838 KN-n.
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Table (5.4) Effect of residual stresses on the maximtm strength

of zero length column Mo. 3.

Diff »
B Mw MR

Mw-MR
Pu Mu Mu ———x109

Mu

* K .
a.1 1.8773 1.849] 2.82
8.2 1.1113 1.6836 2.77
8.3 1.1821 1.08723 2.98
@.4 | 1.8495 | 1.8153 3.42
a.3 8.9536 8.9137 3.99
8.6 @.8145 B.7684 4.61
8.7 B8.6322 @.5889 9.13
0.8 0.4290 8.3763 5.27
8.9 8.2183 B.1637 5.46
Averaye ¥ = 4.85

#* Hithout residual stresses.

#% Hith residual stresses.

Fu

rn

4625 EN.
Mu = 263.9795 KN-n.
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Table (5.3) Effect of residual stresses on the maximum strength
of zero length colusn Mo. 4.

piff %

P Mw MR

Mw-MR
Pu Mu Mu —1 00
Mu

* ¥
8.1 1.@836 1.8335 | 2.81
8.2 1.1236 1.8956 2.74
8.3 l.1184 1.0889 2.95
0.4 1.8695 1.8337 3.38
8.3 @.97635 B.9368 .9
a.6 08.8393 8.7933 4.60
a.7 p.65880 0.6052 2.28
0.8 8.4464 08.3923 3.41
0.9 8.2271 6.1711 J.60

fiverage ¥ = 4.9822

# Without residual stresses.

#% Hith residual stresses.

= 6224.768 KN,
= 410.0815 KN-m

Pu
Mu

(4&)
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CHAPTER V (47)

Tahle (5.6} Effect of residual stresses on the maximum strength
of zero length column No. 6.

Diff »
P Mw MR
Mw-MR
Fu Mu Mu —x1 60
Mu
* 3
8.1 1.8632 1.8338 2.94
9.2 1.0841 1.0%5% 2.96
8.3 1.0628 1.08321 3.07
8.4 9.9992 B.9646 3.46
8.3 9.8933 0.9548 1.93
8.6 B8.7452 9.70a7 4.45
8.7 @.5683 @.3227 4.56
0.8 8.3852 8.3384 4.68
8.9 B8.1953 8.1476 4.79
Average ¥ = 1.86

# Hithout residual stressss.

*% Hith residuval stresses.

Pu

1881.63 XNM.
Mu

72.07 KN-n.
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Table (3.7) Effect of residual stresses on the maximum strength
of zero length column Mo. 7.

Diff ¥
P Mw MR
Mw-MR
Pu Mu Mu —i———*lﬁﬂ
i}
¥ ¥
e.1 1.8433 1.8141 2.94
a.2 1.0481 1.@184 2.97
0.3 1.0137 @.9811 3.26
0.4 0,943 9.9033 3.72
8.5 9.8283 B.7861 4.22
8.6 9.6789 B8.6331 4.58
8.7 Q.57168 8.4781 4.67
9.8 0.3495 8.30816 4.79
8.9 @.1771 8.1243 41.88
Average % = 4.8833

#* Hithout residual stresses,

e Hith

Pu
Mu

residual stresses,

2321.385 KN.
98.29  KN-w.

(48)
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Table (3.8) Effect of residual stresses on the maximum strength
of zero length column No. 2.

Diff ¥

P Hw MR

Mw-MR
Pu Mu - Mu —1 08
Mu

* *e
8.1 1.0344 1.0032 2.74
6.2 1.8318 1.6615 3.03
8.3 B8.991% @.9577 3.38
B.4 8.9137 @.8731 3.86
8.3 9.7984 0.7545 4,39
8.6 @8.6383 0.6041 4.64
a.? B8.4%49 0.4473 4.76
2.8 9.3343 @8.2859 4.84
8.9 8.1693 8.1199 4.94

Average ¥ = 4,086

¥ Hithout residual stregses.

*% Hith

Pu
Mu

residual stresses,

1737.0 XN,
77,88 KN-n.

(4%9)
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Tahle (5.9) Effect of residual stresses on the Maximun strength
of zero length column No, 9.

Diff ¥
P ") MR
Hw-MR
Pu Mu Mu —»| @98
Mu
* %

8.1 1.0768 1.0473 2.93

8.2 1.1639 1.8804 2.83

2.3 1.9963 1.0666 2.97

9.4 1.0389 1.0058 3.3

8.5 @.9368 @.8991 n

2.6 a.790m @.7473 4.23

8.7 2.6633 @.56@3 4.52

@.8 | 0.4106 | 0.3¢48 | a.58

0.9 0.2a648 B.1614 4.74

Average ¥ = 31,7689

* Uithout residual stresses,
¥% Hith residual stresses.

Pu = 2257.55 M.
Mu = 80.9 KN-m.

(50)
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CHAPTER V

Tabie (5.11) Effect of residual stresses on the Hanent-curvature curves,

for column Mg, 1,

(52}

Maxinum moment

(1/mn

)

N-mn?

P Maximum curvaturex18”S Flexural rigidity*1@!?
%: iﬂ % (EL;R %
e.1 ] 1.852 1.@237. 4.3011 | 5.2064 J.2021 |0.0826
8.2 ] 1.0647 | 1.037 2.77 7.3 7.3 0.9808 | 5.@527 J.9492 |9.0891
6.3 ] 1.8357 | 1.0@49 | 3.08 6.1 3.9 3.2787 | 4.8899 4.8853 | 0,894]
@.4}F D.965 6.9286 | 3.64 gl 3.0 1.9688 | 4.7167 4.7117 | 0.1868
0.5 | 9.9341 | @.7907 | 4.34 4.8 4.7 2.6833 | 4.5309 4.3256 |09.1170
0.6 | 0.6600 | 9.6364 | 4.3¢ 4.4 4.4 0.00688 | 4.3299 1.324 |8.1348
0.7 } 0.5200 | @.4762 4.39 4.1 4.} @.0688 | 3.9665 2.5515 [8.1469
0.8 | 0.3534 | @.3089 | 4.45 3.8 3.8 0.8060 | 2.4564 1.9914 18,9301

* Hithout residual stresses.

#% Hith residual stresses.

Pu
Mu

nn

2007.27 KN.
79.6@4 KN-w.
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CHAPTER V

(

Table (5.12) Effect of residual stresses on the nonent4curvature curves,

53)

for column No. 5.
. (1/mn) N-mn®
Maximum moment ) < 12
. Maximun curyature*1@ Flexural rigidity*le
v £R Y (ED)w | (E[)R A
* *¥ * =K
“m e —
1.996 | 1.8693 ) 2.67 4.1 4.1 0.0088 |1.151@ | 1.1506 |9.0348
0.2 ¢ 1.1974 | 1.1218 ) 2.56 .4 3.2 |5.8824 |1.2352 1.2311 |@.3319
8.3 | 1.1504 | 1.1233 | 2.1 2.9 2.7 |3.5744 | 1.1792 1.1746 |@.3901
9.4 | 1.1848 | 1.0731 | 3.17 2.3 2.3 0.0000 | 1.1129 1.188 10.4483
9.5 | 1.e121 | @.9738 [ 3.83 2.0 2.9 0.e0e0 |1.0479 | 1.9426 |o.5es8
0.6 | @.8522 | 0.8055 | 4.67 1.9 1.3 7.2632 | 0.9641 8.9549 19.9743
9.7 | @.6631 | @0.6141 | 4.99 1.7 1.7 |e.eeed |@.8824 | @.8317 |5.7457
0.8 | 0.4589 | 0.4068 | 5.21 1.6 1.6 6.0060 | 98.5718 9.5087 | 11.0353

* Hithout residual stresses.

*#% With residual stresses.

Fu
Mu

8184 KM
614.68 KN-n.
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CHAPTER V

(63)

Table (5.22) Effect of concrete strength on the effect of residual stresses

on the maximum strength.

(1> (2) (3}
. Feu = 20 Feu = 310 Feu = 4@
Pu | Mw/Mu MR/ Mu 7 Mw/Mu MR/Mu A Mw/Mu MR/Mu 4
* % #* *H »* e

___ A
@.1 ] 9.935 2.97¢8 2.5 1.815 9.9%0 2.3 1.930 1.085 2.3
8.2 8.97@ B.94a@ 3.0 1.0606 8.97% 2.3 1.039 1.0865 2.9
8.2 | .905 a.870 3.5 2.950 @.92@ 3.0 9.994 B.96% 2.3
0.4 @.790 8.745 4.5 @.850@ .51 4.0 @.986 9.965% 3.3
8.3 | 9.640 0.600 4.0 0.693 0.655 4.0 a.745 9.7i@ 3.5
8.6 | 0.5035 0.465 4.4 8.545 |. 0.5@5 4.0 0.3585 0.345 4.9
9.7 ] 8.3710 @.330 4.8 @.400 9.360 4.0 0.43¢6 @.390 4.0
9.9 | 0.249 8.19% 4.5 8.2600 0.220 4.8 8.275 9.235 4.0

fverage % = 3.75

filverage % = 3.3

Average ¥ = 3.1325

* Hithout residual stresses.

##¢ Hith residual stresses.

(1Y Pu = 1757 KN.
(2} Pu = 2687.27 KN,
(3) Pu = 2257.35 KN.
g=-1.8
= 1.324 m,

"Mu
Mu
Mu

77.88 KN-n.
79.684 KN-n.
88.9  KN-n,
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CHAPTER V (64)

Table (5.23) Effect of steel strength on the effect of residual stresses
on the maximum strength.

(1) (2} (3)
Fy = 243 . Fy = 276 Fy = 343

Pu | Mw/Mu Mit/Mu, 4 Mw/Hu MR/Mu % Muw/ My MR/Mu P4
* 3 » *¥ ¥ F

8.1 | 1.920 09.995 2.9 1.815 8.990 2.5 8.995 B.97@ 2.5

8.2 | L.e15 08.999 2.5 1.098 @.975 2.9 8.978 0.945 2.3

e.3 | 8.97% 8.940 3.0 @.958 8.928 3.0 @.91@ 0.873 3.3

2.4 9.875 0.8449 3.5 @.85@ f.810 4.0 6.79@ 8.750 4.8

2.5 ] 0.725 | o.635 4.0 | 0.695 | 0.655 { 4.2 | 0.640 | 0.605 | 3.5

@.6 | B.565 0.530 3.5 8.543 @.543 4.0 9.5635 @.465 4.8

8.7 | 6.415 2.380 3.5 9.400 8.360 4.8 8.319 @.338 4.0

2.8 | 9.270 2.230 4.9 0.260 0.220 4.8 @.233 B.195 4.8

fiverage % = 3.3125 Average % = 3.5 Average % = 3.5

¥ Hithout residual stresseg,
#% Hith residual stresses.

(1) Pu = 1981.62 KN. Mu = 72.07 EN-w.
(2) Pu = 2687.27 KN. Mu = 79.604 KN-u.
(3) Pu = 2321.385 EN. Mu = 98.29 KN-n.
= 1.8
L=-1.524 m,
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CHAPTER V (&63)

Table (5.24) Effect of steel strength on the effect of residuyal stresses

on the maximum strength.

) (2) 3)

p Fy = 243 Fy = 276 Fy = 345
Pu | Muw/Mu MR/Mu A Mw/Mu MR/Mu % Mw/Mu MR/Mu %
»* £ * *¥ * *¥

--l----L--------u-----i-------------T--------

8.1 | 0.945 0.915 3.0 @.935 8.32@ 3.5 B.950 @.920 3.e

8.2 | 8.873 @.833 4.4 ¢.89@ @.850 4.0 Q.883 9.843 4.0

8.3 | @.755 8.71e 4.3 0.790 B.738 7.8 B.770 8.725 4.3

9.4 | 0.63@ 0.585 4.5 0.636 2.603 4.5 B.645 @.600 4.5

a.5 | a.510 2.465 4.3 @.538 @.483 4.3 @.525 0.480 4.5

8.6 | e.498 0.355 4.5 9.415 @.370 4.3 2.419 @8.365 4.3

8.7 | 8.290 0.245 4.5 0.3@5 0.260 4.9 Q.3@3 0.25%5 3.9

e.2 | 8.175 | o0.125 J.0 8.193 ¢.143 J.0 @.19a 8.135 9.9

Average ¥ = 4,3125 Average % = 4.43173 Average ¥ = 4.4375

* Without residual stresses.
#% Hith residual stresses.

(1) Pu = 1130.81 EKN. Mu = £4.703 KEN-n.
(2) Pu = 1256.45 XN. M = 71.892 KN-n.
(3) Pu = 1576.56 EN. Mu = B89.865 KN-nm.
g=1.8
L =1.,524 m.
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CHAPTER VI (66)

CHAPTER VI

SUMMARY AND CONCLUSSION

The effect of residual stresses on the maximum
strength of pin-ended battened composite columns loaded
concentrically or eccentrically and bending about the minar

axis is studied numerically.

The method of calculation is based on inelastic
‘column theory, through which Newmark’s inteqration procedure
is used for computing +the +true equilibrium shape of the

deflected column.

The effect of inclusion of residual stresses in the
calculation of the maximum load carrying capacity of the
battened composite columns can be summarized as follows for

the cases considered:

1. The average reduction of strength for
zero-length (1./D=0,10) battened composite
column is 4% of the ultimate strength (Mu),

for the same axial load.

2. The average reduction 0of strength for
zero-length (L/D=0,10) battened steel column
strength is S% of +the ultimate strength

(Mu), for the same axial load .

3. The average reduction of strength for
slender (L/D=20,30,40) battened composite
column strength is 2.9%¢ of the ultimate

strength (Mu), for the same axial load.
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CHAPTER VI (67)

4. The average reduction of strength for slender
( L/D=20,30,40) steel column strength is
4.24 of the ultimate strength (Mu), for the

same axial load.

5. Steel strength has no influence on residual
stresses effect on the maximum strength of

battened composite column and steel column.
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APPENDIX A

MOMENT-CURVATURE CURVES
&

INTERACTION DIAGRAMS
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Fcu= 30 MPa C 152 X 76
Fy= 27E. NPa He 275.
' ‘e:uﬁ 0.0GED ac=0.374051
Pus 2007.27 ¢ LN )1 Mu=  79.60 ( kN.m )
WITHOUT RESIDUAL STRESS.
—_— RITH  RESIDUAL STRESS.
1.7
P/ Pusl
7 pl— 7 g S - B/Pu=0F
/y e
/ L~ Plusoof
09— i/ / i N
/ ~
Ve
\ P \N\ poy=0s
P :
X 07— / g
/
/ —
06— o \Y ppusae
Ve
/
05—
) =
/
04— g -~ P Pu=0.7
/
/ \
0.2 P/Puct8
0 1|
O S N N N N B B
7 10 &0 S0 40 50 60 70 0 Y90 700

Yx * 1E-6 (1,/mm)

FIG. (A1) : MOMENT — THRUST - CURVATURE CURVES
UNDER UNIAXIAL BENDING ABOUT MINOR AXIS
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Peor/Pu

(69)

1.0

08

06

04

/9

Feu= 30 MPa

C 152.X 7B.

Fy= 276. MNPa H= 275. - - '{
Ecu= 0.0060 (X¢=0.374051
Pu= 2007.27 { KN ) Mu= 73.604 ( KN.m ) D
WITHOUT RESIOUAL STRESS. , i
— — -  WITH RESIDUAL STRESS. ot — H ]
* ~. L/D =
- T
NN N P
[N 4%
l9'\\ m‘\\ . N
) e
SNV L
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\0 \ ‘\ \+ \
U N RN
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| = ~ N N \ \
N \
) \0\ \ i T /
I S B e~

FIG. (A2)

COLUMN  UNDER

MINOR AXIS

:ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
UNIAXTAL BENDING ABOUT
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Por/Pu

(70)

1.0

a8

0.6

O«

0.2

Feus 30 WPa C 152.X% 76.
Fy= 276. MPa H= 275, EN \ -{
Ecu= 0.0060 (Xc=0,374051
Puz 2007.27 ( KN ) Mu= 79,604 ( KN.m ) D
WITHOUT RESIDUAL STRESS. j_
— — - WITH RESIDUAL STRESS. e p——"
* . 5/19 —
i
A P
A d\H
_::ao\ h Ny
- E\\ ~
- ™~
20 °\ N \o .
I ~
X Ny 3 2
) as N
N e ~ N
3
19, ad "\\
_ = A, e
O\ :
S, N N ~\-.
S RSN NN
T BN
—— S Ny "
Y,
N T
| | | | |

0.0 0.2 o4 0.6 a8 1.0 1.2

Mer/Mu

FIG. (A.3) .:ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN UNDER UNIAXTAL BENDING ABOUT
MINOR AXIS
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(71)

Feu= 30 MPa C 152.X 76.
Fy= 276. MPc Hz 275. T :
Eecu= 0.0060 (Xc=0.374051 T
Pus 2007.27 ( KN 1 Mu= 79.604 { KN.m ) D
WITHOUT RESIDUAL STRESS. ‘ i
— — - MIH R TRESS. —
- ESIDUAL STRES [T H -
1.0
o
BN a
N
——
08— $
- T
T
.
0
06—
44,
04—
02—
% I R B |

00 02 04 06 08 10 12
| Mer/Mu

FIG. (A4) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN UNDER UNIAXTIAL BENDING ABOUT
MINOR AXIS
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1.0

0.8

06

04

0.2

0.0

(72)

Feu= 30 MPa
fy= 276. WPa
Ceu= 0.0060
Pu= 2007.27 { KN )

C 152 %X 7B,

H= 275.

(Xc=0.374051

Muz  73.6504 | KN.m )

[ 8 \‘\_ o rl{’ﬁ

HITHOUT RESIDUAL STRESS.
WITH RESIDUAL STRESS.

"3 L/D:

~ ¥
5_\\‘\ . D
™~ — y

Ny
N \M.. o8 L

\ “sa\ -

S
"‘-.._‘o

a0 0.2 04 0.6 0.8 1.0 1.2

Mer,/ Mo

FIG. (A.5) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXIAL BENDING ABGUT

MINOR AXIS . ‘
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Per/Pu

(73)

1.0F

0.8

0.6

O«

0.2

0.0

Feu= 30 WPa C 132.%X 76.

Fy= 276. MPa H= 275. ’ '{

£eu= 0.00B0 (X¢=0.374051

Pux 2007.27 ( KN ) Mu= 79.504  Kh.m ) D
WLITHOUT RESIOUAL STRESS. . . j_

— — - WITH RESIOUAL STRESS. pa— | el

a0

0.2 a4 0.6 0.8 1.0 1.2

Mer/ Mu

FIG. (A6) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMFPOSITE
COLUMN  UNDER UNIAXTIAL BENDING ABOUT
MINOR AXIS
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—_ NITHOUT BESIDUAL STRESS -H__ H ____n_l
—— — - WITH FRESIDUAL STRESS
1.1
P Pu=0.8
= - B Pu=0.3
1.0— L7~ A
/// N il
09— Iy
/ /
o8 4 =
% . i // // - \ B/Pu=d 6
P
N or— V4
// ,__,_-"""—_-\\ FPucl S
0 64— P
7
/
05 // g — =\
\ aPu-07
0.4_/
/ o
0.7 P - \\ £ru=as
/
0.2/
o7 4
O S N S N N R
g 70 20 30 20 50 60 70
Yx * 1E-6 (1,/mm)

FIG. (A7) : MOMENT - THRUST - CURVATURE CURVES
UNDER UNIAXTAL BENDING ABOUT MINOR AXIS

(74)

Feus 20 MPa
Fy= 276. NPa
Seu=  0.0060
Pu= 3472 49 (

C 203 X B9
H= 375.
X c=0.397137

kN ) Mu= 177,08 [ kN.m )

ftt— 3 ]

&0
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Per/Pu

(75) -

Feu= 30 MPa ' C 203.X B3.
Fy= 276. MPa M= 375. : — '*-
Eecu= 0.0060 Xe¢=0.397137
CPu= 3472 .49 | KN Mu= 177.084 ( KN.m ) D
WITHOUT RESIDUAL STRESS. - i
— — - WITH RESIDUAL STRESS. j— H —]
1.0
™~ Ny [1/0 =
Hh‘m\ J [
S £
. Sy
P 2N _‘ \\ N
R NN L
50 By
06 D\ b ™ ~
N oo ~ ~
N N
£ ~ e N\
0 L X N N ~ N\
: Ny AN N
X ~ AN
=
AN = N A
02— ~ RN MW
S
I N O o\
0.0 =

00 02 04 06 08 1.0 12
Mor/Mu

FIG. (A.B) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN UNDER UNIAXIAL BENDING ABOUT
MINOR AXIS
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(76)

Feu= 30 WP C 203.X 89.
Fy= 276. NPa H= 375. o )
Eeus  0.0060 Xe=0.357137 -{
Puz 3472.49 ¢ KN 3 Mu= 177.084 ( KN.m } , D
WITHOUT RESIDUAL STRESS. _ j_
— — - WITH RESIDUAL $TRESS. | H
1.0
S J ~ Z//_D =
e &
ety
' P
[ Sy \r\ &\H
< R DN
TNode -
3;" o \o . AN
0. 6"——-'- 0\ \ .
AN NG w3 #PW?
. N ~e % ~
NN ™~
0. R iy NN
0 £1— N &\ AN
' \\ & Q\
ry . o
o= RS AN
s ~ \
02— o N W
RN
| | | | V |
0.0 ¥

a0 0 a4 06 o8 1.0 1.2
Mer /M

FIG. (A9) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXIAL BENDING ABOUT
MINOR AXIS
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Por/ Pu

1.0

0. 8"

06

04

02

0.0

@7 -

Feu= 30 MPao C 203.x% 89.

Fy= 276. NPa H= 175,

Eeu= 0.00B0 X2=0,397137 ?

Pu= 3472.49 ( KN ) Mu= 177.084 ( KN.m | D
WITHOUT RESIDUAL STRESS. i
+  WITH RESIDUAL STRESS. .

| l | | d |

a0 0.2 O4 0.6 a8 1.0 1.2

Mer/Mu

FIG. (A.10) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXTAL BENDING ABOUT
MINOR AXIS - .
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1.0
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00

(78)

Feu= 30  MPo C 203.%X 89.

Fy= 276. NPo H= 375, ' )
Ecu=  0.0060 (X e=0.397137
Pu= 3472.49 ( KN ) Mu= 177.084 ( KN.m )

WITHOUT RESIDUAL STRESS. - .

— — - WITH RESIDUAL STRESS. b e

ot —]

40, g X

| |- | «' |

a0 0.2 o4 0.6 a8 1.0 1.2

Mer, Mu

FIG. (A1) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXTAL BENDING ABOUT

MINOR AXIS
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(79)

Feu= 30 WPa C 203.X 89.
Fy= 276. WPa H= 375. . '{
Ecu=  0.00B0 (Xc=0.397137 Ve

"1 Pu=3472.43 (KN 1 Mu= §77.084 [ KN.o» ) ’ D
WITHOUT RESIDUAL STRESS. j_

— — - HWITH RESIDUAL STRESS. jo— H ey

Per/Pu

O I N N B N /A
a0 0.2 04 0& 08 7.0 1.2

Mer/Mu

FIG. (A12) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXTAL BENDING ABOUT
MINOR AXIS
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Feu= 30 MPa C 254 X 89
Fy= 276. NPo H= 450.
" Eeu=  0.0060 Xec=0.4571133
Pu= 4625 .42 | LN ) Mu=  263.8% ¢ LMN.m )
FITHOUT RESIDUAL STRESS.
— — +  NTY RESPUAL STRESS
11— —
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FIG.(A13); MOMENT — THRUST -~ CURVATURE CURVES

Qx * 1E-6 (1,/mm)

UNODER UNIAXTAL BENDING ABOUT MINOR AXIS

&0
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Peor/FPu

81)

Feu= 30 MPa C 254.% 89.
Fy= Z708. WPa H= 450. .. A -’-
Ecu= 0.0060 Xc=D.457 133
Pu= 4625.42 [ KN ) Mu= 263.980 ( KN.m ) D
WETHOUT RESTDUAL STRESS. . j_
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FIG. (A14) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXIAL BENDING ABOUT

MINOR AXIS
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(82)

Feu= 30  MPa C 254.% 89.

Fg= 276. MPa H= 450.
Leu= 0.0060 (X e=0.457133
Pu= 4525 .42 [ KN ) Muz 263.980 ( KN.m )
HITHOUT RESIDUAL STRESS. s

ot — |
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FIG. (A15) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXTAL BENDING ABOUT
MINOR  AXIS
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Peor/Pu

(83)
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FIG. (A16) ;ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXTAL BENDING ABOUT
MINOR AXIS
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FIG. (A17) :ULTIMATE STRENGTH INTERACTION

CURVES FOR SLENDER BATTEN
COLUMN  UNDER UNIAXTAL BE
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FIG. (A.18) :ULTIMATE STRENGTH INTERACTION
CURVES FOR SLENDER BATTENED COMPOSITE
COLUMN  UNDER UNIAXIAL BENDING ABGCUT
MINOR AXIS
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FIG. (A.19): MOMENT - THRUST - CURVATURE CURVES
UNDER UNTAXIAL BENDING ABOUT MINOR AXIS
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